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Abstract

Sea ice is an important feature of our envi-
ronment, contributing to many aspects of our cli-
mate and ecosystem. Monitoring sea ice is a dif-
ficult and important task. In this work, we aim
to review several different methods of monitor-
ing global sea ice. We specifically aim to analyze
methods of estimating sea ice thickness [6, 8, 14]
and estimating sea ice drift [1, 3] through remote
sensing techniques using SAR. We will provide a
comprehensive study of both sub-topics, introduc-
ing relevant background, technical specifications
of equipment, comparisons of the different meth-
ods, and further discussions of each estimation
task.

1. Introduction
The physical properties of sea ice have a signif-

icant impact on the environment, both locally and
globally. In this work, we investigate two proper-
ties of sea ice: thickness and drift. While there are
several physical properties of sea ice that can be
monitored, we restrict this discussion to these two
in order to provide a detailed analysis of how re-
mote sensing techniques through Synthetic Aper-
ture Radar (SAR) can be utilized to monitor sea
ice.

The influence of sea ice thickness (SIT) on the

ecosystem can have many environmental factors.
One of which is the salinity of the water under-
neath the ice. This can influence the air-ice and
ice-water fluxes, affecting temperature and mois-
ture, as well as ocean currents and circulation.
Thick sea ice is also an important ocean insula-
tor, reflecting much of the radiation from the sun
and preventing the absorption of energy.

Sea ice (especially thick sea ice) also provides
many marine species with a habitable environ-
ment. Ice along the shores in marginal regions
can help protect coastlines from erosion due to
weather and storm surges. Ice over sea water can
also help to trap carbon dioxide and other air pol-
lutants that aid in global warming.

Similar to SIT, sea ice drift also greatly impacts
the environment. Locally, sea ice drift can cause
disturbances as ice moves away from local ani-
mal habitats. This can displaces these species,
ultimately affecting the overall predatory hierar-
chy of the Arctic and surrounding environments.
Drift in sea ice, similar to thickness, can affect
the ability of the oceans to store carbon dioxide
and other air pollutants, which can greatly impact
the temperature of the global atmosphere. The lo-
cal availability of resources is also impacted by
ice drift, with potential changes in wind currents,
ocean salinity, and water temperature.

Drifting sea ice can have substantial impacts on
local enterprises. Relying on navigating around
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Figure 1. Depiction of the backscattering interaction
with First-Year Ice (FYI), Multi-Year Ice (MYI), and
open water [13].

large sections of sea ice, shipping lanes and trans-
portation can directly be affected, which can re-
sult in an increase in shipping costs, supply chain,
and overall dangerous transport conditions. These
dangers are also extended into the fishing indus-
try, affecting the availability and safety of local
fishing. Furthermore, comparative to thin sea ice
on coastlines, ice drift can cause erosion along
the shore, which has the potential to damage in-
frastructure and negatively impact coastal ecosys-
tems.

Monitoring sea ice properties, such as sea ice
thickness and sea ice drift, can aid researchers in
understanding the overall environmental state of
both the Arctic regions, as well as the global en-
vironment. Sea ice is a major contributor to the
regulation of energy that is exchanged between
the atmosphere and the ocean. It acts as both a
temperature insulator, as well as a physical damp-
ening system against large wave action and cur-
rents. With much of the marine transportation and
aquaculture industries negatively affected by sea
ice, it is important to be able to accurately moni-
tor and estimate sea ice properties. Understanding
these properties can provide insight into the state
of the overall environment, regional environment,
and effects this might have on local and global
ecosystems.

2. Background
2.1. Sea Ice stages

There are several stages of ice formation, each
of which having different physical properties af-
fecting remote sensing techniques [13]. The main
stages of ice formation include:

• Open Water

• First-Year Ice (FYI)

• Multi-Year Ice (MYI)

There can also be a subcategory of MYI la-
beled Second-Year Ice; however, we use the over-
all stage of MYI to refer to this subcategory (see
Figure 1 for a depiction of backscattering based
on ice stage). Both open water and FYI are high
loss stages, in which much of the backscatter en-
ergy is determined by the surface roughness of
the ice (or water). In contrast to these high loss
stages, backscatter from MYI is dependent on
both surface and volume scattering. MYI is not
only thicker than FYI, but also contains less salin-
ity and potentially more air pockets, allowing ra-
diation to penetrate deeper into the material and
produce volume scattering. MYI tends to also
have more snow cover in part from the fact that
MYI does not melt during warmer months. The
snow cover can also act as an insulator from solar
radiation, aiding in the prevention of melting.

2.2. Dielectric constant

An important term that must be mentioned is
the dielectric constant (also known as relative per-
mittivity). The dielectric constant is a charac-
teristic of a material that describes the material
ability to store electric energy. When attempt-
ing to obtain information on the physical prop-
erties of sea ice (in this study, thickness and drift)
through remote sensing techniques, it is impor-
tant to take into account the chemical properties
of sea ice and how they correlate with physical
properties. Probing sea ice with electromagnetic
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energy is affected by permittivity characteristics,
causing affects in the propagation and scattering
(especially volume scattering) of electromagnetic
waves. Several works aim to leverage the knowl-
edge of the dielectric constant of sea ice in order
to make connection between the type of ice, as
well as perform inference on the sea ice charac-
teristics.

3. Sensors for Sea Information Re-
trieval

3.1. Sensing Techniques

Ship and In-Situ Observations Manual
recording of ice conditions, as well as in-situ ice
observations, had been and are still used to record
properties of sea ice [16]. Such ship logging is
difficult to use as there is no real standardized
method for recording ice property information. It
is also a challenge to cross-reference many differ-
ent observations logs written by different individ-
uals into a unified data collection. In-situ observa-
tions give much more detailed information of the
ice structure. This involves drilling into ice sheets
and inspecting the cores. Properties such as thick-
ness, age, salinity, composition, and structure can
be observed from ice cores, but the drilling pro-
cess is time-consuming, expensive, and often dif-
ficult to physically perform. They also provide
very limited coverage of sea ice sheets, providing
small samples that may not be representative of a
large spatial area.

Remote Sensing Remote sensing is a use-
ful and practical technique to obtain information
from large areas, especially remote locations that
are difficult to navigate. Radar is a type of re-
mote sensing technology that uses electromag-
netic waves to detect and measure the properties
of objects. Radar sends out short pulses of ra-
dio waves in a specific directing in order to probe
the surrounding environment. These radio waves
bounce off of object in front of the radar and re-
turn responses back to the system antenna. These
responses are received by the radar and are inter-

preted based on several properties of the returning
wave (frequency, amplitude, intensity, time-of-
flight). Radar is typically not used in sea ice mon-
itoring, as this is mainly nadir-facing and holds
ambiguities of reflectance from an undetermined
point on the surface (surface snow, ice, open wa-
ter, etc.) [16]. Instead, the synthetic aperture radar
(SAR) is the remote sensing tool of choice for in-
formation retrieval in the arctic regions.

3.2. Principles of Synthetic Aperture Radar (SAR)

Synthetic Aperture Radar (SAR) is a type
of radar system that transmits electromagnetic
waves into the environment in order to mea-
sure backscattering and deduce material struc-
tures, characteristics, and distances. SAR makes
use of several different observations taken at dif-
ferent time-steps in order to construct an analo-
gous sensing modality similar to a radar with a
very large aperture. This property of simulating
a large aperture through a geometric time-delay
leads to much higher spatial resolutions. SAR
typically operates in X-, C-, or L- band under the
following frequencies:

• X-band: 8-12 GHz

• C-band: 4-8 GHz

• L-band: 1-2 GHz

SAR uses the backscattering information col-
lected from the environment to construct an im-
age of the mapped region of interest. It can oper-
ate in all-weather conditions, and during the night
(similar to other active sensors). This make SARs
very desirable for continuous mapping of environ-
ments like the Arctic.

3.3. SAR Polarization

Polarization is an important feature of radar.
Polarization refers to the plane orientation of the
transmitted and received waves. The waves os-
cillate in specific planes and depending on the
specified transmit and receive path, SARs can
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Figure 2. Depiction of the different scanning modes
for Synthetic Aperture Radar [10]. (a) shows an SAR
in Strip-Map mode, (b) shows an SAR in ScanSAR
mode, and (c) shows an SAR in Spotlight mode.

detect different backscattering patterns from sur-
faces and objects. Typically, SARs transmit and
receive these waves in linear polarizations, in
which they either specify a horizontal plane, de-
noted by H , or a vertical plane, denoted by V .
When the polarization is specified as HH , this in-
dicates that it transmits and receives electromag-
netic waves in the horizontal plane orientation.
If it is specified that the polarization is V H , the
SAR transmits waves in vertical orientation and
receives signals in the horizontal plane. Differ-
ent polarization orientations can lead to identify-
ing different surface properties. Certain polariza-
tion combinations may be used to detecting vol-
ume scattering backscatter better, while another
may be more suited to identify rough surface con-
ditions. We will see that many of the works pre-
sented in this paper utilize different (and some-
times multiple) polarization configurations.

3.4. SAR Modes

There are several different modes of SAR, each
with its own advantages and disadvantages:

• Strip-Map Mode

• Spotlight Mode

• ScanSAR Mode

Strip-Map mode is a mode in which the an-
tenna of the SAR remains in a fixed position
throughout the flight. This is usually fixed along
the path of travel of the airborne SAR, with po-
tentially a slight tilt forward or backward.

Spotlight mode is a scan pattern in which the
SAR focuses the antenna on a small region. The
antenna stays fixed on this spotlight region while
passing overhead. This allows for high resolution
scanning of the desired location, but results in a
very small scanning coverage.

ScanSAR mode is when the SAR antenna
sweeps periodically and covers a much larger
area. With this mode, there is a trade-off between
azimuth resolution and the size of the area that is
being mapped. The larger the sweeping area, the
worse the azimuth resolution. Figure 2 shows ex-
amples of the different scanning modes.

4. Estimating Sea Ice Parameters
In the following section, we will explore sev-

eral different methods for detecting the thickness
and drift of sea ice. We use these two characteris-
tics as a proxy to study the affects that different
SAR scanning modes, polarizations, and multi-
modal sensing inputs have on the inference of sea
ice properties. We first analyze a few methods
of estimating sea ice thickness, followed by an
overview of several methods to estimate sea ice
drift. We will then provide some discussion on
the articles presented here, with in-site on poten-
tial research directions.

4.1. Sea Ice Thickness (SIT)

Article 1. The work by Shi et al. named Sea
Ice Thickness Retrieval From SAR Imagery Over
the Bohai Sea [14] builds off of work done by
Karvonen et al. [5], and use a hybrid method for
detecting the thickness of observed sea ice. This
work applies a numerical sea ice model along-
side SAR imagery. They use 10 ScanSAR wide
mode RADARSAT-2 images with HH/HV dual-
polarization operating at C-band with a center
frequency of 5.405 GHz. The spatial resolution
of the SAR images is roughly 3 - 100 meters,
with a swath width of 500km and a pixel spac-
ing of about 50m. The thermodynamic model
used in this research is the high-resolution ther-
modynamic snow and ice (HIGHTSI) model. The
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Figure 3. Algorithm pipeline [14].

model was originally introduced to explore ice
and snow thermodynamics in seasonally covered
areas, but has been adapted to analyzing areas
with year-round sea coverage. The model looks to
compute heat conductivity for multi-layered snow
and ice coverage, modeling thickness and thermo-
dynamics of these layers. Many parameters are
considered in the model: solar radiation, air-ice
fluxes, ice color and albedo, cloud cover, and sub-
surface snow and ice melting. The input atmo-
spheric forcing information is taken from the Eu-
ropean Centre for Medium-Range Weather Fore-
casts (ECMWF). The model also uses the daily
ice concentrations computed from the Artist Sea
Ice (ASI) algorithm using data from the Advanced
Microwave Scanning Radiometer 2 (AMSR2) [15]
to produce the thermodynamic estimate of ice
thickness. This thermodynamic estimate is used
as a prior for the SAR imagery to aid in the esti-
mation of sea ice thickness. Before the SAR data
can be used in an estimation pipeline, the data
must be pre-processed. The first processing step
is a calibration, or in other words, a radiometric
correction of the SAR images to obtain the loga-
rithmic backsacattering coefficients σ0, which are
denoted in decibels, using the following calibra-
tion equations [5],

σ0 =
A2

K
sin(α) =

I

K
sin(α) (1)

σ0(dB) = 10log10(σ
0) (2)

where A is the amplitude value, K is the calibra-
tion coefficient, α is the incidence angle, and I

is the intensity for the SAR. In practice, the inci-
dence angle ranges from 20◦ to 50◦. After geo-
rectification (following LCC projection [17]) and
land masking [21], the SAR images are processed
to correct the incidence angle and pass through a
speckle noise filtering stage in order to produce
the final SAR image mosaic of the desired area
(see Figure 4).

With the processed SAR images, Shi et al.
run k-means clustering on the SAR image in or-
der to segment the images into groups of similar
backscattering coefficients. K-Means clustering
is an algorithm commonly found in Computer Vi-
sion literature, although its origin is from the sig-
nal processing community [9]. Two texture (pat-
tern) features of the images are then computed
from this segmentation: the number of edge pix-
els relative to segment area, and the ratio of the
standard-deviation to the mean of the backscat-
tering coefficient, per-segment. We leave much
of the details of these image processing stages as
an exercise for the reader as image processing is
mostly out of scope for this work.

In evaluating the feature choices, the authors
choose to exclude the first texture feature (the
number of edge pixels relative to the segment
area) after looking at the correlations between
this feature and in-situ ice thickness measure-
ments. The pre-processed SAR image and the
second feature were used to estimate ice thick-
ness through a linear model. Then another linear
model was used incorporating the output of the
HIGHTSI model and the SAR data to produce the
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Figure 4. SAR mosaic after processing (shown in dB
scale) of the Gulf of St. Lawrence off Canada [5].

final estimate of ice thickness, H ,

H1 = 1.321σ0 − 258.8F2 + 21.93 (3)
H = 0.4H1 + 0.6HHIGHTSI (4)

with the overall equation simplifying to,

H = 0.5285σ0−103.52F2+0.6HHIGHTSI+8.772
(5)

where σ0 is the processed backscattering coeffi-
cient, F2 is the second texture feature (the statis-
tics ratio), and HHIGHTSI is the thermodynamic
model estimate of ice thickness from the HIGH-
TSI model. The entire estimation pipeline can be
viewed in Figure 3.

The proposed method works in general, but
there is one major issue. The estimation of the
thickness of sea ice in marginal regions along the
coast (transition regions between sea ice and open
sea water) proves to be challenging. The SAR
backscattering data for thin ice in these regions is
quite similar to the coefficients observed for thick

Figure 5. Colorization of sensor images
({HV,HH, V V } → {R,G,B} [6].

Figure 6. Backscattering coefficient ration (BCR) vs.
Ice thickness [6].

ice. This leads to ambiguities in the estimation,
and inconsistencies in regions of thin, marginal
ice.

Article 2. The work of Kim et al. titled Es-

TerraSAR-X RADARSAT-2
Date 2009.5.02 2009.4.28

Frequency 9.65GHz (X-band) 5.405GHz (C-band)
Polarization HH & VV HH & HV

Incident angle 27.28◦ − 29.03◦ 33.61◦ − 39.75◦

Table 1. Equipment specifications used in experiments
[6].
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Figure 7. Cross-polarization ratio vs. Ice thickness [6].

timation of Sea Ice Thickness in the Arctic Sea
Using Polarimetric Parameters of C- and X-band
Space-Borne SAR Data [6] aim to leverage the re-
lationship between depolarization factors and the
physical parameters of sea ice in order to estimate
sea ice thickness. Previous work [11, 12, 20] had
shown how the cross-polarization ratio (VV-HH)
of the backscattering coefficient can be correlated
to the thickness of First-Year Ice (FYI), effec-
tively removing the effects of ice surface rough-
ness from the SAR measurements. Kim et al [6]
aim to explore the correlation between the cross-
polarization ratio from multiple frequency bands
of SAR and different physical properties of sea
ice to help alleviate the effects of these physical
properties during the estimation of sea ice thick-
ness.

They specifically investigate the effects rela-
tive to thick FYI and MYI, which were not con-
sidered in previous work. To perform their re-
search, the authors used data from TerraSAR-
X and RADARSAT-2. TerraSAR-X collected
dual-polarization data using VV and HH polar-
ization in Strip Map mode. RADARSAT-2 col-
lected dual-polarization data using HH and HV
polarizations in Standard Mode. The specifics of
the SAR data collection can be seen in Table 1.
Similar image processing to the previous method
was used, including radiometric calibration and
speckle noise filtering. A colorized depiction of
the backscattering coefficients relative to the po-

larization can be viewed in Figure 5.
This work makes use of the extended Bragg

scattering model. Essentially, in order to estimate
the cross-polarization ratio, the cross-polarization
energy of the Bragg surface is converted into a co-
variance matrix. The definition the authors use is
as follows,

|RHVHH | =
|SHV |2

|SHH |2
(6)

Where RHVHH is the cross-polarization ratio,
and SHV and SHH are the polarimetric scatter-
ing matrices for the polarization modes of HV
and HH , respectively. These matrices depend
entirely on the backscatter amplitude of the SAR
data (representing the surface roughness informa-
tion), the incidence angle, and the complex per-
mittivity (which is a property of dielectric materi-
als correlating to the amount of energy absorption
of the sea ice),

[S] =

[
SHH SHV

SV H SV V

]
= ms

[
RS(θ, ϵ) 0

0 RP (θ, ϵ)

]
(7)

where ms is the amplitude of the backscatter, and
RS and RP are the Bragg scattering coefficients
of the incidence plane,

RS =
cosθ −

√
ϵ− sin2θ

cosθ +
√
ϵ− sin20

(8)

RP =
(ϵ− 1)(sin20− ϵ(1 + sin20))

(ϵcosθ +
√
ϵ− sin20)2

(9)

where ϵ is the complex permittivity and θ is the
incidence angle. For more information on these
formulations, please refer to the work of Hajnsek
et al. [2].

Using the X-band data from the TerraSAR-X
and the C-band data from the RADARSAT-2, the
authors analyze the previously established rela-
tionship between the backscatter coefficient ra-
tio (BCR) of VV to HH polarization to sea ice
thickness; however, investigating areas with thick
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FYI and MYI, which was previously left out of
the correlation analysis. In Figure 6, the two data
points can be shown to actually have little corre-
lation, with a correlation coefficient of 0.055548.
Now, using the C-band data as well as the cross-
polarization formulation defined above, the cor-
relation between this value and the thickness of
thick FYI and MYI is now much higher, with
a correlation coefficient of 0.84679, as shown in
Figure 7.

It is observed that the cross-polarization used
in this work is sensitive to the surface roughness
of the sea ice, and not the dielectric constant. An
extended Bragg scattering is used to aid in this
analysis, which can allow the estimation of sea
ice thickness under the assumption that surface
roughness corresponds to SIT.

Article 3. The work of Liu et al. titled Estima-
tion Of Sea Ice Thickness In The Bohai Sea Using
A Combination Of VIS/NIR And SAR Images [8]
explores the multi-modal fusion of VIS/NIR im-
ages and SAR images in order to estimate the
thickness for sea ice with different levels of sur-
face roughness. SAR data collected for ice with
smooth, level surface is not useful for estimat-
ing ice thickness due to high reflectivity and low
backscattering energy. Ice with this characteris-
tic would be better suited for thickness estima-
tion from VIS/NIR images. On the other hand,
VIS/NIR remote sensing is less sensitive to the
measurement of sea ice with a rough surface, due
to radiative transfer properties [18]. In this case,
SAR images would be the preferred data type for
estimating ice thickness. This article aims to com-
bine the strengths of each sensing method in or-
der to formulate a complete estimation framework
that integrates the effective sensing capabilities of
both modalities.

For the VIS/NIR sensing data, Liu et al use the
HJ-1 (A/B) satellite. This satellite uses a charge-
coupled device (CCD), which is an integrated cir-
cuit with an array of linked capacitors used for im-
age sensing. The satellite is also equipped with:
(HJ-1A) a Hyper-spectral Imager (HSI), and (HJ-

1B) an IRS infrared sensor. For this work, the
authors use the image data taken from the CCD
sensor onboard HJ-1B. The CCD sensor holds the
following specifications:

• surface spatial resolution: 30m

• swath width: 360km

• solar elevation: 33.81◦

• azimuth angle: 343.30◦

• wavelength range (across all bands):
0.43µm− 0.90µm

The SAR data that was used in these exper-
iments were pulled from the ENVISAT satel-
lite. The SAR data was captured using with a
C-band imaging waveband with several polariza-
tion modes: VV, HH, VV/HH, HV/HH, VH/VV.
However, for the experiments in this paper, only
the VV polarization data is used. The additional
specifications are as follows:

• surface spatial resolution: 150m (re-sampled
to 75m)

• swath width: 400km

• solar elevation: 33.81◦

• incidence angle: 19◦ − 40◦

Because the CCD sensor is obtaining reflective
information passively through the atmosphere, in
order to work with the VIS/NIR CCD data, an at-
mospheric correction must be made. The atmo-
spheric reflectance is first computed as follows:

ρ∗(λ) = ρr+a+
ρ(λ)

1− ρ(λ)S(λ)
TU(λ)TD(λ) (10)

where ρr+a is the reflectance from the atmo-
sphere back towards the satellite, ρ(λ) is the sur-
face reflectance, λ is the wavelength, TU(λ) and
TD(λ) are the upward and downward atmospheric

8



Figure 8. Fitted curve for the relationship between ice
thickness and VIS/NIR reflectance [8].

transmittance, and S(λ) is the hemispherical re-
flectance. For more details on computing these
terms, please refer to the work of Vermote [19].
With the atmospheric reflectance computed, the
surface reflectance is obtained through the follow-
ing formulation:

C =
ρ∗(λ)− ρr+a(λ)

TU(λ)TD(λ)
(11)

ρ(λ) =
C

1 + CS(λ)
(12)

where ρ(λ) is the final corrected surface re-
flectance.

To utilize the SAR data, the ENVISAT data
must also be processed and converted into the cor-
responding backscattering coefficients,

σV V =
DN2

K
sin(α) (13)

where, σV V is the backscattering coefficient, DN
is the digital number for each pixel in the SAR im-
age, K is the calibration number, and α is the in-
cidence angle. Similar post-processing of this im-
age is performed, such as the filtering of speckle
noise.

To evaluate the correlation between the re-
flectance from the VIS/NIR images and the

Figure 9. Fitted curve for the relationship between ice
thickness and SAR backscattering coefficient [8].

backscattering from the SAR data, the relation-
ship between in-situ thickness measurements and
these terms was plotted. In Figure 8, we ob-
serve the trend between the reflectance and sea
ice thickness (with the top-right five points on the
curve representing in-situ measurements of thick-
ness vs. reflectance measure with a spectrora-
diometer at ground level). The curve fitted is log-
arithmic, and is defined as the following,

hL = 319.5 ln(1 + ∆ρV IS/NIR) (14)

The R2 (quantifying the goodness of fit for the
fitted curve) is R2 = 0.988 (higher is better), with
an RMSE = 0.978 cm (lower is better). We can
observe that the measurements taken at ground-
level follow the curve more closely than the sam-
ples taken from the HJ-1 satellite. This is most
likely a factor of the atmospheric corrections used
in the correction of the reflectance term, although
the curve fits the data rather well.

In Figure 9, we observe the fitted curve be-
tween the sea ice thickness and the SAR backscat-
tering coefficient. The curve fitting here is expo-
nential and is defined as follows:

hR = 203.8 exp(0.1504σV V ) (15)

The R2 value for this data is R2 = 0.90, with
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an RMSE = 2.3 cm. As we can see from the
plots as well as the quantitative curve fitting statis-
tics, the SAR data follows this exponential trend
in relation to the sea ice thickness, although more
loosely than the VIS/NIR imagery.

This work also makes several assumptions, one
of which being the reflective properties of sea ice.
This work applies the assumption that the sur-
face exhibits isotropic reflection patterns, since
not enough image data was captured at varying
angles. This assumption, however does not hold
[4] and is baked into the computation of the sur-
face reflectance, potentially resulting in inaccu-
racies for this term. Another issue that the au-
thors run into is the ability to segment the cap-
tured remote sensing maps into land and sea re-
gions. Since both sensing techniques hold some
ambiguities attempting to distinguish these two
regions, the authors apply a computed mask of
the known land area to the captured sensing data.
A means of automating this information could
be obtained through a prior mapping of the re-
gion during warmer months, in which the bor-
der between sea and land more obtainable. This
would, however, not be a viable option if much of
the surrounding sea is still frozen during warmer
months.

4.2. Sea Ice Drift

Article 1. Howell et al. aim to analyze and
compare the use of L- and C-band SAR esti-
mates and their effectiveness at detecting ice mo-
tion vectors over different types of sea ice in their
work titled Comparing L- and C-Band Synthetic
Aperture Radar Estimates of Sea Ice Motion Over
Different Ice Regimes [3]. The data used for
this work was provided by several different satel-
lites using synthetic aperture radar. The SAR im-
agery obtained for this research was taken from
the RADARSAT-2, PALSAR-1, and PALSAR-2
satellites. The RADARSAT-2 has a 50 m spatial
resolution and captured data in ScanSAR mode.
The frequency used on this satellite is a 5.405
GHz C-band frequency profile, with the choice of

using only the HH polarization. The PALSAR-
1 and PALSAR-2 satellites operate with a spatial
resolution of 100 m and 25 m, respectively, also
operating in ScanSAR mode. Both satellites op-
erate in L-band, with PALSAR-1 operating with
a frequency of 1.270 GHz and PALSAR-2 oper-
ating with a frequency of 1.2575 GHz. HH polar-
ization was also used for these satellites. While
other polarization configurations are available for
these satellites (HV,VV,VH), the choice of HH
polarization was based on a lack of information
from the PALSAR-1/2 satellites in other polar-
ization configurations, as well as supposed image
corruption under the other settings.

To aid in the process of drift vector estima-
tion, determining the ice type and melt stage can
be beneficial. To estimate these auxiliary proper-
ties, the Advanced Scatterometer (ASCAT) data
was used from the European Space Agency’s Me-
teorological Operational (MetOp) satellite. AS-
CAT (real aperture radar) has a spatial resolution
of 25 km; however, the Scatterometer Image Re-
construction (SIR) processing increases the reso-
lution to 4.45 km. The ASCAT operates under
VV polarization in C-band with a frequency of
5.255 GHz and an incidence angle of 40◦. Addi-
tional data provided by the Canadian Ice Service
Digital Archive (CISDA) was also employed.

In order to perform the comparison between L-
and C-band SAR data, an ice motion tracking al-
gorithm, developed by Komarov and Barber [7],
was used with both data types. The algorithm first
applies several layers of image processing, in-
cluding ice feature identification (through a mea-
sure of local SAR image variance), with Gaus-
sian and Laplace operators convolved over the
processed images. Phase-correlation and cross-
correlation techniques (typically used in feature
matching algorithms) are used in tandem in a cy-
cle consistent manner, where the motion vectors
are estimated both forward (from image 1 to im-
age 2) and backward (from image 2 to image 1).
For further information on the ice motion tracking
algorithm, as well as an evaluation of the algo-
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Figure 10. Motion vector fields for L- and C-band
SAR under dry MYI conditions [3].

rithm, we refer the reader to the original paper [7].
The first ice stage evaluated between the dif-

ferent band data is Dry MYI. Figure 10 shows
the vector fields for the estimated ice tracking for
both frequency ranges. For this condition of ice,
C-band data from RADARSAT-2 is more sensi-
tive to the thin ice that can be found between
ice sheets, leading to more motion vectors and a
more continuous motion field. The L-band data is
not as sensitive in these areas, producing much
less texture (if any) in the regions between ice
sheets. Aside from the number of motion vectors,
a cross-correlation score, essentially measuring
the motion vector quality, is also measured. The
cross-correlations for the L-band data were actu-
ally higher than the C-band data. Because of the
lower frequencies of the L-band SAR, the elec-
tromagnetic waves can penetrate further into the
thicker MYI sheets, causing high volume scatter-
ing and more textures in the SAR images to per-
form feature matching across images.

The next stage is Dry FYI. Figure 11 shows the
vector field for this sea ice condition. In this sce-

Figure 11. Motion vector fields for L- and C-band
SAR under dry FYI conditions [3].

Figure 12. Motion vector fields for L- and C-band
SAR under early melt MYI conditions [3].

nario, the L-band data had both a larger number of
motion vectors as well as much better quality of
vectors, via much larger cross-correlations. The
lower frequency L-band with deeper penetrating
EM waves is less sensitive to surface scattering of
FYI, and is instead quite sensitive to the dielec-
tric properties of the ice and the volume scatter-
ing effects of air bubbles. This creates a much
more detailed and textured SAR image, allowing
for much more accurate feature matching across
images, and hence, higher quality ice drift esti-
mation.

Melting conditions are explored next, investi-
gating MYI under early and advanced melt. Fig-
ure 12 and Figure 13 show the motion vector
fields for the early melt MYI and advanced melt
MYI, respectively. Again, we can observe the
L-band vector fields having an increased density
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Figure 13. Motion vector fields for L- and C-band
SAR under advanced melt MYI conditions [3].

of the C-band motion fields. The wet layer of
snow and water provide challenges for higher fre-
quency C-band waves, with increased absorption
and lower wave penetration. The L-band waves
are able to penetrate the wet surface and into the
ice, resulting in much higher details in the SAR
backscatter images. This results in a larger num-
ber of high quality motion vectors.

The final stage observed is new and grey white
ice. Figure 14 shows the vector field for this
stage of ice formation. This newly formed (or
in the process of forming) ice exhibits a thinner
structure, with an increase in surface roughness
during formation. Because of these characteris-
tics, L-band is again much more effective at de-
tecting highly detailed texture features of the sea
ice. The surface roughness negatively affects C-
band SAR, with the L-band benefiting from de-
tecting the deeper, ice-water boundary, which can
be highly detailed. The vector fields fro the L-
band contain more motion vectors than the C-
band field, as well as higher quality vectors with
higher cross-correlation scores.

Figure 14. Motion vector fields for L- and C-band
SAR under new and grey white ice conditions [3].

This work looked to quantify previous theoreti-
cal assumptions about the potential benefits of us-
ing L-band SAR to detect sea ice drift. With a
full suit of comprehensive tests over several data
samples, comparing L- and C-band SAR in differ-
ent ice stages and varying thermodynamic states,
Howell et al. show just how effective L-band SAR
can be at identifying details in sea ice.

Article 2. The work Enhanced Arctic Sea Ice
Drift Estimation Merging Radiometer and Scat-
terometer Data [1] by Girard-Ardhuin et al. is
intended as a method to join scatterometer and ra-
diometer data into a unified drift field, as opposed
to using a single sensing modality. The authors
aim to combine a passive sensing Special Sen-
sor Microwave Imager (SSM/I) with backscat-
ter data collected from the SeaWinds/QuikSCAT
scatterometer in order to estimate Arctic sea ice
drift.

The passive sensors used in this work includes
the SSM/I and Advanced Microwave Scanning
Radiometer-Earth (AMSR-E). The SSM/I has a
spatial resolution of 12.5 km while using the 85.5
GHz channel. Both H and V polarizations are
used for these experiments. The AMSR-E has a
spatial resolution of 6.25 km when using the 89
GHz channel. Both H and V polarizations are
used for this sensor as well.

The active scatterometers used in this work are
the SeaWinds/QuikSCAT scatterometer, operat-
ing in the Ku-band, and the ASCAT operating in
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C-band. The SeaWinds/QuikSCAT utilizes an in-
ner and outer beam sensing structure, in which
the inner beam operates at H polarization with
a 46◦ incidence angle, and the outer beam oper-
ates in V polarization with a 54◦ incidence angle.
The backscatter images have a spatial resolution
of 12.5 km. The ASCAT uses V polarization and
has incidence angle ranging from 25◦ to 65◦. The
spatial resolution of the backscatter images is 12.5
km.

Girard-Ardhuin et al. first present the details of
the single sensor estimation process before pro-
viding a detailed explaination of the fusion pro-
cess. Estimating a motion vector field from pas-
sive sensors can be somewhat limited (based on
weather and time-of-year), as this passive sensor
requires clear atmospheric conditions and stable
radiation. In order to measure displacements and
produce motion vectors for the sea ice, the authors
employ the maximum cross-correlation (MCC)
score between images. The images are first pre-
processed, similar to previous methods, by apply-
ing Laplacian filtering and smoothing. Follow-
ing smoothing, the MCC between time-delayed
images is computed, producing the raw correla-
tion scores. These scores are then filtered by
thresholded an outlier removal method, as well
as a local consistency constrained filtering. The
active sensor maps are also processed using the
same pipeline. The QuikSCAT and ASCAT pre-
processed backscattering images, as well as the
pre-processed correlations from the passive sen-
sors, are then used to directly infer the drift vector
fields.

With the individual drift maps estimated from
each modality, The authors aim to combine these
estimates to form a complete and complimen-
tary vector field of the sea ice. There are sev-
eral cases when overlaying the individual vector
fields. From the three modalities, there is a max-
imum possible number of three overlapping drift
vectors. See Figure 15 for a depiction of the dif-
ferent states for a drift vector. In situations where
multiple drift vectors from the different sources

Figure 15. Merged map of drift vectors [1].

Figure 16. Three day ice drift vector field [1].

are overlayed, the authors use a weighted com-
bination scheme to select the appropriate motion
vector.

Quantifying the benefits of merging radiometer
and scatterometer drift maps, the vector density
is computed. Initially, the separate modalities ob-
served low vector densities of 15% − 60%, espe-
cially during warm months where radiometer data
is unreliable. Combining the sensing techniques
leads to density increases to more than 60% den-
sity, rising to 80% − 90% during winter months
without a degradation in vector quality.
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5. Discussions and Conclusion

The estimation of sea ice thickness and drift
come with many challenges. The work presented
in this review shows promising results and accu-
rate estimation, but experienced some challenges
in different regions under observation. It could
be beneficial to include different modalities of
remote sensing to aid in particular cases where
SARs struggle. Fusion (although linear) between
ice property estimation models and SAR data
were investigated. Specifically, in work of Shi
et al [14], issues arose near transition regions be-
tween sea ice and open sea water. Some poten-
tial directions of further research would be to in-
corporate information inferring the detection of
these regions, whether that be through different
image processing techniques on the SAR data, or
through addition inputs, such as satellite images
of these regions, in order to incorporate additional
features into the estimation pipelines.

Using scattering models, such as an extended
Bragg scattering model, was also investigated.
Kim et al. work towards analyzing the correla-
tion between the cross-polarization ratio and sea
ice thickness for thick FYI and MYI. The results
they provide are compelling, but rely on the as-
sumption that surface roughness of this category
of sea ice corresponds to sea ice thickness. This
is not always the case, and is an assumption that
should require further investigation.

Liu et al. explored the possibility of combining
VIS/NIR images with SAR backscattering data
for the purpose of ice thickness estimation. Due to
the different properties of FYI and MYI, as well
as level and rough ice, different sensing devices
are more suited for measuring different stages of
sea ice. They showed that using a combination of
sensor modalities can lead to more effective es-
timates of ice properties. The results they show
could benefit from CCD images taken at differ-
ent angles, as they make heavy assumptions sur-
rounding the reflective properties of the sea ice
observed. The isotropic assumption of the physi-

cal structure of sea ice does not hold, and with the
formulation of their reflectance values relying on
this assumption, their estimates may suffer.

Comprehensive comparisons between different
SAR frequency bands was also explored in the
work of Howell et al. [3]. This work looked to
quantify the previous theoretical assumptions sur-
rounding the use of L-band SAR in the monitor-
ing of sea ice, especially for estimating sea ice
motion fields. The L-band SAR showed much
more dense vector fields in almost all cases, with
higher quality motion vectors. Since the goals
for estimating sea ice drift require detecting de-
tailed features of sea ice, the deeper penetra-
tion of L-band SAR helped with a lot of the
challenges present with various ice surface non-
uniformities. Penetrating through rough new ice
surface and wet snow/water deposits on melting
ice sheets aided in the formation of higher de-
tailed backscatter images, ultimately leading to
higher quality sea ice drift estimation.

The combination and fusion of both passive
and active remote sensing for sea ice drift was
explored by Girard-Ardhuin et al. Their work
looked to fuse vector fields from both radiome-
ters and scatterometers in order to compliment
each sensing modality and produce a complete
vector drift field over a several-day time window.
In principle, this method works; however, relying
on radiometer data that is unreliable in adverse
weather conditions and without consistent radia-
tion energy is sub-optimal.

It would be an interesting avenue of research
to explore the possibility of incorporating differ-
ent forms of optimization and machine learning
into an ice properties estimation pipeline. Most of
the previous work either relies on hand-selected
image processing stages and feature extractions
of SAR imagery, or the manual affine fusion of
numerical models and remote sensing data in or-
der to estimate different sea ice properties. With
a more complex function approximation (through
some form of learned regression model, or more
advanced applications of deep learning), it may
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be possible to produce more accurate estimations.
The fusion of different sensing modalities seems
to be a recurring topic in many of the works
presented in this review. Merging sensor data
taken from satellite images (visible and/or near-
infrared), SAR backscattering measurements, nu-
meric models, and local weather conditions into
a unified pipeline as multi-channel vector inputs
into such a function approximation may prove
beneficial.

We provided in this work an introduction into
the area of sea ice monitoring, providing some
necessary background information, as well as mo-
tivation for the importance of this body of work.
We introduce some of the technology that is pri-
marily used in the field, along with the technical
properties that make the sensing methods effec-
tive. We review several works residing in the sea
ice monitoring realm, discussing their approaches
and formulations, as well as any potential avenues
of improvement.
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