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1. Introduction

Visual servoing is the process of utilizing the informa-
tion captured by images from positioned cameras in the
workspace of a robotic manipulator for the purpose of driv-
ing the motion of the robot. For a gentile introduction to
visual servoing, we will begin by briefly discussing the
choice of camera placement in relation to the manipula-
tor, followed by the introduction of two different solution
paradigms: position-based visual servoing and image-based
visual servoing.

The choice of camera placement can be driven by the
overall desired task of the system, or the specific paradigm
that is being implemented. There are mainly two types of
camera placements used in visual servoing. The first is la-
beled Eye-To-Hand visual servoing. This specifies a static
camera at some vantage point in the workspace that has a
view of the overall workspace, any objects of interest, and
the manipulator. The second is labeled Eye-in-Hand visual
servoing. In this configuration, the camera is mounted on
the end-effector of the robot, allowing the camera to have
a more direct vantage point of any objects of interest, re-
ducing the number of possible object occlusions, while in-
troducing a dynamic camera pose. In this work, we will be
focusing on the latter camera configuration.

Heavily based on the desired end task, there are two
choices of visual servoing algorithms. The first is position-
based visual servoing and the second is image-based visual
servoing.

Position-based Visual Servoing (PBVS) involves ex-
tracting information from images in order to recover or es-
timate object and camera pose. This method performs in-
ference in a 3D space, generating pose errors in Cartesian
space using a desired 3D pose. This method is more suited
for tasks, such as grasping, that require precise 3D pose es-
timation in order to drive the robot motion.

Image-based Visual Servoing (IBVS) is a method that
operates in a 2D space. Errors are computed directly in im-
age space using the extracted features of the image. Robot

movement in this method is driven by minimizing the cur-
rent observed features with a set of desired features. There
is some information loss in using an IBVS method, as ori-
entation on some objects may be ambiguous, since the goal
is to only obtain a desired image. With that in mind, it is
quite simple to implement and works well for visual tasks,
such as tracking.

2. Derivations

In this work, we will mainly be focusing on an IBVS
method using an eye-in-hand system. The essential mathe-
matical formulation for image-based visual servoing is the
formulation of the image Jacobian. To construct the image
Jacobian, the focal length f, depth to object Z, and pixel
coordinates (u,v) are needed.
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This matrix relates the camera velocity (position and ori-
entation) to the feature velocities, sometimes referred to as
the pixel velocities, as follows:
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Since we measure the pixel velocities, we can use the
pseudo-inverse of the image Jacobian to obtain the cam-
era velocities. In order to drive the robot motion, we need
to then relate the camera velocities to the joint velocities.
The first step is to transform the camera velocities into end-
effector velocities. This is done here with the transforma-
tion "Jacobian”, J£°.
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Figure 1. Centroid Feature Descriptor
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where R.. and R.,,, are the rotation matrices in end-
effector and camera frame, respectively. After transforming
the velocities into the end-effector reference frame, we can
then use the robot Jacobian to relate the end-effector ve-
locities to joint velocities. The full equation is depicted as
follows:
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Here, M represents the pseudo-inverse of a matrix M.

3. Implementation

The task that we will be focusing on with this work is the
task of continually tracking an object in space. We will be
using a red sphere in a simulated environment.

3.1. Basic Tracking

In the first iteration of performing this task, we will ex-
tract a single, simple feature from the image; the centroid
of the sphere. Since this is a toy example, the segmentation
process and centroid computations are relatively trivial and
will not be expanded upon here. Once we have our single
feature descriptor, we can use the pixel coordinates of the
centroid to minimize the error between the measured fea-
tures locations and the desired feature location. Essentially,
we can drive the robot to move the end-effector in such a
way to center the sphere in the camera view. The feature
descriptor used in this iteration is shown in Figure 1.
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Figure 2. Center Line Feature Descriptor

3.2. Increasing Descriptors

The trajectory for the simple centroid tracking worked
effectively to center the sphere in the image; however, the
single feature descriptor is not enough to constrain the robot
motion from moving too close or too far from the object.
This formulation cannot overcome the scale ambiguity of
just a singular projected feature in the image plane. To help
better maintain a relative distance to the sphere, we intro-
duce a three-descriptor formulation. Here, we use the cen-
troid of the projection of the sphere in the image plane, as
well as the extreme y-axis coordinates. The feature descrip-
tors used in this iteration are shown in Figure 2.

3.3. Resolved Rates & Modified Descriptor Struc-
ture

Using the centroid and the bounding pixels along the y-
axis end up causing non-optimal convergence, as well as
continued (yet reduced) scale ambiguity due to all the fea-
tures existing on the same line in the feature space. In order
to produce non-col-linear features, we modify the feature
extraction to take a triangular pattern around the circumfer-
ence of the projection of the sphere into the image plane.
This helps reduce the scale ambiguity, allowing the robot to
not only converge to its desired position quicker, but also
reduces some noise in maintaining the relative distance to
the sphere. The feature descriptors used in this iteration are
shown in Figure 3.

The second adjustment to the algorithm used in this iter-
ation is the introduction of a resolved-rates approach to the
end-effector velocity. Instead of using the direct velocity
transformations, we compute the normal of the end-effector
velocity to obtain the direction of change and produce the
velocity magnitude based on the feature error. The modified
formulation is the following:
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Figure 3. Triangular Feature Descriptor
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4. Evaluation

Evaluation of these iterations was done both qualitatively
and quantitatively. The simulation videos where inspected
to asses the overall robot movement and tracking speed. To
form a quantitative evaluation, we compute the tracking er-
ror as a function of time. The errors are measured in pix-
els as the Mean Absolute Error (MAE) between the cur-
rent measured feature pixel locations and the desired fea-
ture pixel locations. Plots for the three different algorithm
versions are shown in Figure 4. As we can see, the track-
ing error for the first method was smooth, yet started to di-
verge as the simulation progressed. This is due to the un-
stable distance between the robot and the object. Increasing
the number of feature descriptors allows us to have a more
consistent tracking error, yet it is still relatively large error
magnitudes and is slowly increasing. The best results are
observed after we modify the feature structure, as well as
the Cartesian velocity magnitude through a resolved rates
algorithm. We can see our convergence is relatively quick
and stable.

5. Conclusion

The comparison of the three different visual servoing
methods for tracking an object is relatively straight forward.
The single feature used in the basic tracking method lead to
slow convergence and decreasing stability. Adding more
features helped in both regards; however, similar conver-
gence issues were still present. The robot failed to converge
quickly and stably on the object as it moved through the
space. Using a resolved rates approach increased the speed
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of convergence and modifying the feature layout helped to
properly maintain the distance to the object without the is-
sues of the previous scale ambiguous formulations. There is
still room for improvement, as the robot movement is still
too jittery. We can see that in order to converge quickly,
there exists small, high-frequency changes in robot pose. In
future work, we look to alleviate some of these issues and
produce a smooth, yet accurate tracking trajectory free of
these high-frequency pose changes.
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