
Centralized Collaborative Visual SLAM: A Technical Overview

Nathaniel Burgdorfer
Literature Review Paper

ME 656: Autonomous Navigation for Mobile Robots, Spring 2022
Stevens Institute of Technology

nburgdor@stevens.edu

Abstract

This work provides an overview on current state-of-the-
art methods in Collaborative Visual SLAM. Several frame-
works have been published regarding Collaborative Visual
SLAM in which systems utilize multiple mobile robots or
handheld devices with passive camera sensors in order to
increase the robustness, speed, and overall quality of Simul-
taneous Localization and Mapping systems. In this review,
we focus entirely on centralized visual monocular frame-
works, with methods following a sparse, indirect, keyframe-
based approach to SLAM.

1. Introduction
With the increasing availability of inexpensive, light-

weight camera sensors, visual SLAM has become increas-
ing popular for many applications. As apposed to using Li-
DAR, visual SLAM system use a passive observation of
light and measure pixel intensities to gather information
from the environment. This information is extracted from
images as feature descriptors of robust, highly identifiable
sections of images. SLAM systems use the identification
of the same features in multiple image frames in order to
reason about frame locations and 3D features coordinates
in the given scene. To augment a traditional visual SLAM
system, multiple robots can be introduced in a collaborative
architecture in order to increase the robustness and accu-
racy of localization and map building. Collaborative multi-
robot approaches also allow for faster coverage and map-
ping of a given environment. Within the context of Collab-
orative SLAM systems, there is a choice between a cen-
tralized or decentralized architecture. In a decentralized
architecture, the robot agents communicate directly with
each other, sending map information and updates directly to
other robots. While these types of systems can theoretically
scale to a larger swarm of robots, most literature typically
focuses on a centralized approach. With a central server,
much of the computationally expensive tasks, such as loop

closure and global map optimizations, can be offloaded to
the server. This allows the agents to concentrate all com-
putational bandwidth towards time-critical tasks, such as
visual odometry. A centralized approach also allows the
robot agents to offload much of the old recorded map in-
formation to the server for storage. For the remainder of
this review, we will be focusing on works that follow a cen-
tralized approach. In Section 2, we will introduce several
state-of-the-art frameworks in the centralized collaborative
visual SLAM paradigm. In Section 3, we will give a sum-
mary of the topic, as well as provide implementation details
from each of the related frameworks.

2. Related Work
Previous works in the area of multi-robot systems have

either focused on the localization or mapping problems sep-
arately. These works do not fully utilize the information
provided by a multi-robot system, and can only be restricted
to either improving localization estimates or improving 3D
reconstruction tasks.

Looking to create a system architecture that enables the
sharing of information between robots for the entire SLAM
task, Morrison et al. introduce MOARSLAM [5], a client-
server architecture between multiple robot agents and a cen-
tralized server. This framework uses several robot agents
that run full SLAM systems on-board, while providing up-
dates to a central server to accumulate and distribute a
global map of the environment.

Schmuck and Chli introduce Multi-UAV Collaborative
Monocular SLAM (MCM-SLAM) [9], a robust centralized
collaborative SLAM approach that looks to take full advan-
tage of a central server with presumably much higher com-
putational bandwidth. In contrast to the work by Morris et
al. [5], MCM-SLAM looks to offload all computationally
expensive tasks to the centralized server, leaving only real-
time necessary tasks on the servers. This allows the robot
agents to apply their potentially limited on-board resources
exclusively towards real-time tasks, such as visual odome-
try.

1



Schmuck and Chli continue their previous work with
CCM-SLAM [10], a more efficient real-time, multi-robot
capable SLAM framework. In their previous work, their ex-
periments were run with pre-recorded datasets which does
not thoroughly test the practicality of the proposed method.
Here, they look to include a more rigorous communication
infrastructure, as well as introduce a redundancy detection
scheme to reduce the number of keyframes stored without
compromising the information and robustness.

3. Method
Most visual SLAM pipelines choose either a filter-based

architecture or a keyframe-based architecture to perform
continuous localization and optimize landmark mapping.
The filter-based architectures employ a variation of the Ex-
tended Kalman Filter (EKF) to estimate the ego-motion of
the robot as well as the locations of any landmarks in the
environment. Due to this coupling of pose and landmark
estimation, filter-based approaches can be rather inefficient
depending on the number of landmarks. Specifically for
collaborative, multi-robot systems, it is not trivial to apply
an EKF approach to enable information sharing by deploy-
ing a single filter across multiple robots.

The keyframe-based architectures rely on capturing fea-
tures and their corresponding 3D points from the current
frame, as well as the position and orientation of the frame.
This type of approach allows the system to separate pose
estimation from map optimization. A recursive approach is
applied to update either the camera pose with the map fixed,
or optimize the map with the pose fixed. This is more ap-
plicable to a collaborative setting and tends to be a more
accurate approach.

3.1. Visual Odometry

The works that are highlighted in this review utilize a
keyframe-based visual odometry front-end. This is an in-
direct, sparse formulation of localization and mapping. In-
stead of directly using pixel intensities to track position and
map the surroundings, these methods opt to extract features
from each frame to represent the information content of
each image. Frames are then selected according to the quan-
tity and quality of the extracted features. These selected
frames are known as keyframes, and the position and orien-
tation of these keyframes, as well as the extracted features,
known as 3D map points, are stored in a local map. Using
this indirect, sparse formulation is favorable in a multi-robot
environment where mapping information must be passed
between client and server. It is also favorable consider-
ing the potentially limited resources of the robot agents in
practical scenarios. The approach taken in MOARSLAM
follows the work presented by Kevian et al. [2], in which
they produce relative pose estimates through the tracking
of FAST corner features [7], using IMU measurements to

reduce scale ambiguity. MCM-SLAM and CCM-SLAM
adopt the front-end visual odometry presented in ORB-
SLAM [6], in which ORB features [8] are used instead of
FAST corner features.

3.2. Pose-Graph Structure

The map structure for collaborative visual SLAM is
taken from the graph representation found in RSLAM [4].
This representation, named Continuous Relative Represen-
tation (CRR), maps each keyframe as a node in a graph
connected by edges representing the relative transformation
between each keyframe. Map points can then be projected
from their 3D coordinates with respect to the keyframe that
originally viewed the feature, into the current keyframe us-
ing the sequence of relative transformations following the
edges of the graph. This representation is advantageous as it
allows flexibility in connecting new keyframes to a map that
has been adjusted through some global optimization (dis-
cussed in Section 3.7); such is the case when asynchronous
keyframe updates are sent to the central server while the
server is optimizing a stored map after loop closure detec-
tion.

3.3. Map Management

Centralized collaborative SLAM systems typically have
to manage a trade-off between maintaining local map stor-
age and passing map information to a centralized server. In
MOARSLAM, each robot is running a full SLAM system
independently, while sending periodic keyframe updates to
the server. The keyframes that are sent to the server are
automatically fused into a global map being maintained by
the server. MCM-SLAM and CCM-SLAM maintain a local
map using a select number of keyframes representing the lo-
cal area around the UAV. This local map contains graph con-
nections between keyframes and their respective 3D map
points. This map also includes covisibility information be-
tween keyframes. These covisibilities are represented as
undirected edges connecting two keyframes if the frames
share map points greater than some threshold, N . In order
to maintain a small local map, pruning is performed to keep
the number of keyframes in check. In most cases once the
number of keyframes becomes larger than the threshold, the
oldest keyframe in the local map is removed.

The first exception to this rule is when the keyframe to
be removed was not received by the server. For this rea-
son, a buffer is used to store old keyframes until they are
received by the server, in which case they will be deleted.
If the buffer becomes filled due to a loss of communication
between the agent and the server, then the pruning algo-
rithm must remove keyframes. In this scenario, the local
map must be trimmed in a way in which information loss
of the overall collaborative system is minimized. Taking
into account the possibility that an agent’s local map con-

2



tains keyframes captured by other agents (which will be ex-
plained in the subsequent discussion), these keyframes will
be removed first. The intuition is that if these keyframes
were already propagated to another agent, they must already
be stored on the central server. If the buffer is still full af-
ter removing keyframes from other agents, then the oldest
keyframes will be removed.

On the server, a server map is stored for each robot in the
system. This server map has no maximum keyframe capac-
ity, and therefore stores all past observed keyframes. The
server also performs map fusion, which will be discussed in
Section 3.6. If the server maps for multiple agents are fused
together, the original server map for each of those agents
is replaced by the fused map. As a product of fusion, the
server also stores a transformation from each agent local
map to the server map associated with the agent. The two
maps are initially aligned, but as a result of potential map
fusions, the server must keep track of this transformation.

In the case of CCM-SLAM, the server also detects and
removes some redundant keyframes. The server randomly
selects a keyframe and compares the feature and map point
content of this keyframe to neighboring keyframes with
high covisibility. If the overlap of map points and features is
over a threshold percentage, then the keyframe is removed
from the server map. This allows the removal of redundant
information and keeps the server map size to a minimal size
without loss of information.

3.4. Communication

The communication framework for MCM-SLAM and
CCM-SLAM operate in a similar manner; however, CCM-
SLAM incorporates a few key assumptions and optimiza-
tions to better handle real-time communication between
several mobile robots. CCM-SLAM separates the messages
sent between the agents and servers into a ”new data” mes-
sage and an ”update” message. When new keyframes are
generated, the new keyframes as well as the corresponding
map points must be propagated throughout the collaborative
system. This requires rather large messages to be passed
over a wireless system. Instead of always sending the en-
tire package of information, this work looks to just pass the
necessary updated information, such as keyframe and map
point pose updates. Separating these two types of messages
into new and updating messages allows for much less data
traffic over the wireless system. With this modification, the
average reported network traffic was reduced from 10 MB/s
to 0.37 MB/s.

3.5. Loop Closure

MOARSLAM follows the loop closure algorithm of
Gálvez-López and Tardós [1]. This algorithm is employed
on both the client and the server. Essentially, a bag-of-
words database is used to compare features across images

for the purpose of place recognition. The ORB features
are computed around the stored FAST corner features for
each image. These ORB features are converted into a bag-
of-words vector that is used to query the database. Poten-
tial matches are computed based on feature similarity and
relative keyframe position. When enough local keyframe
similarities are accumulated, loop closure is performed by
computing the local transformation between the keyframes,
adding an edge to the pose-graph. The server loop closure
task is triggered when a robot agent uploads a keyframe to
the server for matching. If a loop closure match is found,
the server sends the matching keyframe and the new trans-
formation edge to the robot. The robot can also request that
the local connectivity surrounding the matched keyframe
be transferred to incorporate a small section of the global
map into the local agent map. MCM-SLAM and CCM-
SLAM uses two different modes of detecting and propagat-
ing loop closures. Searching for loop closures happens on
the server and is completed between keyframes in a single
server map, named Intra-Map Place Recognition, and be-
tween different server maps, named Map Matching. Intra-
Map Place Recognition uses the current keyframe to query
all keyframes from the agent server map. The query is per-
formed over the feature space of the keyframes, returning
the keyframe that maps the same map points. This trajec-
tory overlap is used to help optimize the entire trajectory
and map accuracy through Bundle Adjustment discussed in
Section 3.7. Map Matching searches for overlap between
two server maps. If an overlap is found, this overlapping
keyframe information is used in the map fusion stage dis-
cussed in Section 3.6 to combine the server maps.

3.6. Map Fusion

Map fusion is a relatively straight-forward process. Two
maps with corresponding keyframes and map points are
combined to create a fused server map including informa-
tion from both separate maps. One server map is used as
the new frame of reference, while the other is transformed
to align with the reference map. The overlapping keyframes
and map points are combined, and a global bundle adjust-
ment is run to optimize the new server map.

3.7. Global Optimization

Any time the system detects loop closures or map over-
laps, a global optimization step is performed. In the case
of MOARSLAM, adaptive-window bundle adjustment pre-
sented by Kevian et al. [2] is used when new keyframes
are added to the pose-graph. Following ORB-SLAM
[6], MCM-SLAM and CCM-SLAM perform a reduced
pose-graph optimization on a subgraph of highly covisible
keyframes before running Global Bundle Adjustment (BA).
The BA used here is the Levenberg-Marquardt algorithm
implementation provided in g2o [3]. Global Bundle Ad-

3



justment is run in order to refine the accuracy of the map.
Specifically, BA aims to increase map accuracy by mini-
mizing the re-projection errors of all key frames and 3D
map points. Since this is a relatively slow process (on the
order of seconds), this is run entirely on the server to allow
the robot to continue running the necessary real-time pro-
cesses. This refinement gets propagated to the agents with
periodic updates from the server.

4. Conclusion

For practical application that include small UAV robots
with potentially limited resources, a centralized collabora-
tive approach to SLAM can aid in increasing robustness
and mapping accuracy. MOARSLAM introduces a frame-
work for a client-server architecture to allow robot agents to
store, fuse and share information in an environment. MCM-
SLAM looks to extend, and capitalize on the centralized ap-
proach, focusing on allowing the robot agents to prioritize
necessary real-time computations while off-boarding com-
putationally expensive tasks to the central server. CCM-
SLAM aims to take the initial framework developed in
MCM-SLAM and extend it to experiments involving prac-
tical datasets and live experiments, with contributions in-
volving optimizing the global map storage system and re-
ducing the overall network traffic required to pass informa-
tion throughout the system. There are clear advantages over
a single entity SLAM system, with some distributed sys-
tems challenges as a result. Overall, collaborative visual
SLAM is a promising direction as small form-factor com-
putation power becomes more widely available, with areas
of impact reaching from AR/VR applications to search-and-
rescue scenarios.

References
[1] Dorian Gálvez-López and Juan D Tardos. Bags of binary

words for fast place recognition in image sequences. IEEE
Transactions on Robotics, 28(5):1188–1197, 2012. 3

[2] N Keivan, A Patron-Perez, and G Sibley. Adaptive asyn-
chronous conditioning for visual-inertial slam. In Interna-
tional Symposium on Experimental Robotics, 2014. 2, 3

[3] Rainer Kümmerle, Giorgio Grisetti, Hauke Strasdat, Kurt
Konolige, and Wolfram Burgard. G¡sup¿2¡/sup¿o: A gen-
eral framework for graph optimization. In 2011 IEEE In-
ternational Conference on Robotics and Automation, pages
3607–3613, 2011. 3

[4] Christopher Mei, Gabe Sibley, Mark Cummins, Paul New-
man, and Ian Reid. Rslam: A system for large-scale map-
ping in constant-time using stereo. International journal of
computer vision, 94(2):198–214, 2011. 2

[5] John G Morrison, Dorian Gálvez-López, and Gabe Sib-
ley. Moarslam: Multiple operator augmented rslam. In
Distributed autonomous robotic systems, pages 119–132.
Springer, 2016. 1

[6] Raúl Mur-Artal, J. M. M. Montiel, and Juan D. Tardós. Orb-
slam: A versatile and accurate monocular slam system. IEEE
Transactions on Robotics, 31(5):1147–1163, 2015. 2, 3

[7] Edward Rosten and Tom Drummond. Machine learning for
high-speed corner detection. In European conference on
computer vision, pages 430–443. Springer, 2006. 2

[8] Ethan Rublee, Vincent Rabaud, Kurt Konolige, and Gary
Bradski. Orb: An efficient alternative to sift or surf. In 2011
International Conference on Computer Vision, pages 2564–
2571, 2011. 2

[9] Patrik Schmuck and Margarita Chli. Multi-uav collaborative
monocular slam. In 2017 IEEE International Conference on
Robotics and Automation (ICRA), pages 3863–3870, 2017. 1

[10] Patrik Schmuck and Margarita Chli. Ccm-slam: Robust and
efficient centralized collaborative monocular simultaneous
localization and mapping for robotic teams. Journal of Field
Robotics, 36(4):763–781, 2019. 2

4


	. Introduction
	. Related Work
	. Method
	. Visual Odometry
	. Pose-Graph Structure
	. Map Management
	. Communication
	. Loop Closure
	. Map Fusion
	. Global Optimization

	. Conclusion

